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Collision Detection Towards
Natural Interaction in VEs
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Restricted Boxtrees

= Combination of k-d tree and AABB

splitting planes

lower child
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= Storage: 1 float, 1 axis ID, 1 pointer
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= Observation: on most sides, child boxes almost touch parent box
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Results 4.
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Object-Space Coll. Detection on the GPU 5!

= Background on stream architectures (and GPUs)

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream = ordered set of data of arbitrary datatype.
= Kernel = program to be performed on each element of the input stream

= Sample stream program:

{
stream A, B, C; .
kernelfuncl( input: A, o z @] S S
output: B); - 3 & 2 =
kernelfunc2(input: B, . e ] -
output: C); .
}
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m Overview g.!

= Simultaneous overlap testing of multiple BVs
® Implementation:
= Stream = list of BVs = texture

= Kernel = BV intersection test = fragment program

Dedicated Hardware for Coll.Det.

universitatbonn
= General problem of "general purpose" computations on the GPU
— competition among resources
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= FPGA board (Xilinx Virtex Il Pro) for prototyping
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= Results A
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= FPGA implementation has no cache yet(!)
= FPGA is much slower than ASIC (100 MHz, slow mem interface)
= With FPGA, the CPU is completely idle

i Further Speedup v!

= Observation: absolute accuracy is often not necessary

— New notion: approximative collision detection

= Goal: continuous and controlled balancing between running
time and accuracy

= Benefit: time-critical computation




! "Gedankenexperiment"
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General Approach

= Average-Case approach:

= Estimate probability of intersection for whole sets of polygons (at
inner nodes of BVH)

— BVH traversal guided by probability (P-Queue)
= Modification of BVHs: store simple description

= Advantage of our approach: can be applied to (almost) any kind
of BVH / hierarchical collision detection
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Estimating the Probability

1. Partition A N B with grid of s cells

2. Compute number of "well-filled"
cells: s,

3. Dito for B: s

4. Compute probability that x cells

are "well-filled" from both A and B:
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Point Clouds

= Motivation: renaissance of points as object representation
because of 3D scanners 4

= Goal:
= Fast collision detection between 2 given point clouds

= No polygonal reconstruction

Definition of the surface

= |dea: assume "distance function" f from surface, then surface S
is

S={xeR3|f(x) =0}

= "Distance" function f by Weighted Least Squares:

.t
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ot
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= Visualization f(x) using Euclidean distance:

= Problems:

Surface def.

= Cause and solution:

= Which neighborhood graph?
— k-SIG (sphere-of-influence graph)

Surface def.

proximity graph
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Benefits

= Much less artifacts

= Automatic, sampling-density independent
detection of boundaries

= Automatic kernel bandwidth selection —

handles different sampling densities
automatically

i

MLS, h=5 MLS, h=10 MLS,h=14  SIG, h= autom.

orig. PC old method our method

CD using Point Cloud Hierarchies

Point Cloud Collision Detection

Jan Klein, Gabriel Zachmann

Eurographics 2004 — Grencble, France
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Hierarchical coll.det.

Coll.Det. of PCs using Stochastic Sampling %!

= Given two point clouds A and B (or subsets thereof), construct
a sampling of
2 = {x| fa(x) = fg(x) =0}

= QOverall method:

(pub;) EA Approx. Refined
on different intersection intersection
sides of B points point

< 5

Stochastic intersection
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Results &j!
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= Theoretical complexity: O(log log N)

Kinetic Bounding Volume Hierarchies &j!

= For collision detection of deformable objects ...
= .. but not just for collision detection!

= Can be applied to ray-tracing, occlusion culling, etc.

= Pre-processed hierarchy becomes invalid when object deforms

— BVH must be rebuilt or updated after deformations
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Our Approach

= QObservation:

= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BVHs occur only at
discrete time points

—We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetization

Kinetic Toy Example

Max

y Q

Min

Event Queue

(t1, Q, R, Max x)

t1

Kinetization
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m Results
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Natural Interaction

= Direct manipulation is more intuitive and
sometimes even more efficient

= Goal:
= Model and simulate the real human hand

= |Interaction between virtual environment
and virtual hand

= Not necessarily physically correct but
physically plausible

= Applications:
= Virtual assembly Simulation
= 3D Sketching

= Medical surgery training

Projekt: Naturliche Objekt-Manipulation

= Plausible, realitdtsnahe, Echtzeit-Simulation

= DFG und EU-Antrag (Integrated Project)
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L7,

== Implementation

= 17k quad mesh hand model
= Skeletal representation

= OpenSG for visualization

Data Collection with VRJuggler

Physical simulation by OpenDE
= Spring model for virtual grasping

= Does not rely on heuristics to estimate user intend or grasp state

Result (work in progress)
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Real-Time Camera-Based 3D Hand Tracking %!

= Goals
= Observe hand with cameras
= Determine global hand position and orientation in 3d-space

= Determine hand state, i.e. angles between fingers

HKW Challenges &;!

® Measurement noise

= Camera lens distortion

= Uncontrolled illumination

= Mutual occlusions of the hand
= Large working volume

= Fast hand motion

= High problem dimensionality
(~ 27 DOFs)
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Sh

Approach

= Capture hand with cameras from several
viewpoints

= Preprocessing of captured images
(correction of camera lens distortion,
noise filtering)

= Edge detection

= Skin segmentation (bad illumination
correction, skin region detection)

= Generate hand model (cylinders, triangle-
mesh)

= Predict hand state

= Match hand model with image edges and
skin regions in images

204

Overview of the System “!
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1. Lens distortion

. %G correction 1. Edge detection
i ",,, 2. Noise filtering 2. Skin color

3. bad illumination segmentation
correction

Calibration
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