K

—

Prof. Gabriel Zachmann
Clausthal University, Germany
zach@in.tu-clausthal.de

Volkswagen Tagung, Sep 2006

Collision Detection Towards
Natural Interaction in VEs

~ N N

R

Collision Detection Pipeline

DOP-
tree

=1l 10 |-

&

1 i I___
/E Set transform. Broad E“\‘ Narrow E \
,,zi in scene graph phase i \‘ phase i
T \ .
\
)
v
Object Front Collision Grid Convex
L handler end interest hulls
App. — matrix

.

X
Bbox-
\Pipeline

o bo

9/14/06

Restricted Boxtrees

= Combination of k-d tree and AABB

splitting planes

lower child

Cu

ClY

= Storage: 1 float, 1 axis ID, 1 pointer

b?

= Observation: on most sides, child boxes almost touch parent box

-
_

9/14/06

9/14/06

Results 4.

1.8
EVH Bytes / Node \ Restr. Boxtree
Restricted Boxtree 9 814t | sat lite
= “A Rapid ——
Sphere Tree 20 € \ S
P £, | \\\
AABB Tree 28 £ N
0.6 \ -
OBB Tree 52 o
0.2
24-DOP-Tree 100 0 20 %0 60
pgons / 1000
car lock
2
| Restr. Boxtree — 0.6 Restr. Boxtree ———
E 1.6 DOP tree 9 . /A\ DOP tree
E 121 % 0.4 “J
o 0.8 — \
£ £ o2
0.4 - .
()| e —— 0 -~
0 20 40 60 0 50 100 150 200 250
pgons / 1000 # pgons / 1000

Object-Space Coll. Detection on the GPU 5!

= Background on stream architectures (and GPUs)

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream = ordered set of data of arbitrary datatype.
= Kernel = program to be performed on each element of the input stream

= Sample stream program:

{
stream A, B, C; .
kernelfuncl(input: A, o z @] S S
output: B); - 3 & 2 =
kernelfunc2(input: B, . e] -
output: C); .
}

9/14/06

m Overview g.!

= Simultaneous overlap testing of multiple BVs
® Implementation:
= Stream = list of BVs = texture

= Kernel = BV intersection test = fragment program

Dedicated Hardware for Coll.Det.

universitatbonn
= General problem of "general purpose" computations on the GPU
— competition among resources

Id¥

wun-sibuohy

= FPGA board (Xilinx Virtex Il Pro) for prototyping

9/14/06

iy ¥ !

= Results A

150 o ‘ ' ‘ soﬁwaré —]
140 = FPGA-accelerated —— |

time (msec)
©
S

40 sy -
30 5 5
20 a5 =

06 07 08 09 1 11 12 13 14 15 16
distance

= FPGA implementation has no cache yet(!)
= FPGA is much slower than ASIC (100 MHz, slow mem interface)
= With FPGA, the CPU is completely idle

i Further Speedup v!

= Observation: absolute accuracy is often not necessary

— New notion: approximative collision detection

= Goal: continuous and controlled balancing between running
time and accuracy

= Benefit: time-critical computation

! "Gedankenexperiment"

"wisbliigiiiitzel Zelle

General Approach

= Average-Case approach:

= Estimate probability of intersection for whole sets of polygons (at
inner nodes of BVH)

— BVH traversal guided by probability (P-Queue)
= Modification of BVHs: store simple description

= Advantage of our approach: can be applied to (almost) any kind
of BVH / hierarchical collision detection

9/14/06

Estimating the Probability

1. Partition A N B with grid of s cells

2. Compute number of "well-filled"
cells: s,

3. Dito for B: s

4. Compute probability that x cells

are "well-filled" from both A and B:

20

Sa B
x—1 5 (5 SB) e 000
t o0 00
Pric(ANB) >x]=1-— Z ALEAL mild 8 o ol L]
t=0 SA) [—
s
s
- Results /
car
0.3
— pmin=0.99
9 — pmin=0.90
£ 0.2 — pmin=0.80
~
(]
£ 0.1
E=
0 ‘ ‘ ‘ ‘ ‘ ‘
1.2 1.3 14 15 16 1.7 1.8 19 2
104
S 8
~
2 6
I
a 4 — pmin=0.99
24 — pmin=0.90
0 fpmln—OSO

1.2 13

‘|4 ‘IS 16 ‘|7 18 19 2

distance

9/14/06

Point Clouds

= Motivation: renaissance of points as object representation
because of 3D scanners 4

= Goal:
= Fast collision detection between 2 given point clouds

= No polygonal reconstruction

Definition of the surface

= |dea: assume "distance function" f from surface, then surface S
is

S={xeR3|f(x) =0}

= "Distance" function f by Weighted Least Squares:

.t

ot
ot

9/14/06

= Visualization f(x) using Euclidean distance:

= Problems:

Surface def.

= Cause and solution:

= Which neighborhood graph?
— k-SIG (sphere-of-influence graph)

Surface def.

proximity graph

9/14/06

Benefits

= Much less artifacts

= Automatic, sampling-density independent
detection of boundaries

= Automatic kernel bandwidth selection —

handles different sampling densities
automatically

i

MLS, h=5 MLS, h=10 MLS,h=14 SIG, h= autom.

orig. PC old method our method

CD using Point Cloud Hierarchies

Point Cloud Collision Detection

Jan Klein, Gabriel Zachmann

Eurographics 2004 — Grencble, France

9/14/06

10

@
@wa Results *!

34 g Buddha
~ — Elephant
2.5 " I!‘\\ e Aphrodite
[---=--Sharan

time / millisec

0.5 1.0 1.5 2.0 2.5

FF -

#points: 148,689 #points: 89,036 #points: 35,700 #points: 62299 #points: 35,056 # points: 137,125 # points: 197,315

Hierarchical coll.det.

Coll.Det. of PCs using Stochastic Sampling %!

= Given two point clouds A and B (or subsets thereof), construct
a sampling of
2 = {x| fa(x) = fg(x) =0}

= QOverall method:

(pub;) EA Approx. Refined
on different intersection intersection
sides of B points point

< 5

Stochastic intersection

9/14/06

11

9/14/06

Results &j!

25
——RST (old)
20 .
——iSearch (new)
g
e 15
-
[
£ 10
5 |
28,000 points 0 T T
0 0,5 1 1,5 2 2,5 3

distance (relatve to bbox size)

= Theoretical complexity: O(log log N)

Kinetic Bounding Volume Hierarchies &j!

= For collision detection of deformable objects ...
= .. but not just for collision detection!

= Can be applied to ray-tracing, occlusion culling, etc.

= Pre-processed hierarchy becomes invalid when object deforms

— BVH must be rebuilt or updated after deformations

12

Our Approach

= QObservation:

= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BVHs occur only at
discrete time points

—We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetization

Kinetic Toy Example

Max

y Q

Min

Event Queue

(t1, Q, R, Max x)

t1

Kinetization

9/14/06

13

m Results

Avg time per BVH
update / msec
= = N
o (6,1 o

(6,1
1

o

Shirt Scene (~ 100,000 triangles)

= " = u
—o—Kin AABB
- Bottom-Up

\

20 80 160 320

Num in-between frames

Total time incl. collision detection time

o 100
5 80-
S 60 -
£ 40
I i
£ o
0

Shirt scene

-+ Kin. AABB
-& Bottom-up

N DA R AV P
PTG

Total num triangles

9/14/06

14

Natural Interaction

= Direct manipulation is more intuitive and
sometimes even more efficient

= Goal:
= Model and simulate the real human hand

= |Interaction between virtual environment
and virtual hand

= Not necessarily physically correct but
physically plausible

= Applications:
= Virtual assembly Simulation
= 3D Sketching

= Medical surgery training

Projekt: Naturliche Objekt-Manipulation

= Plausible, realitdtsnahe, Echtzeit-Simulation

= DFG und EU-Antrag (Integrated Project)

9/14/06

15

L7,

== Implementation

= 17k quad mesh hand model
= Skeletal representation

= OpenSG for visualization

Data Collection with VRJuggler

Physical simulation by OpenDE
= Spring model for virtual grasping

= Does not rely on heuristics to estimate user intend or grasp state

Result (work in progress)

9/14/06

16

9/14/06

Real-Time Camera-Based 3D Hand Tracking %!

= Goals
= Observe hand with cameras
= Determine global hand position and orientation in 3d-space

= Determine hand state, i.e. angles between fingers

HKW Challenges &;!

® Measurement noise

= Camera lens distortion

= Uncontrolled illumination

= Mutual occlusions of the hand
= Large working volume

= Fast hand motion

= High problem dimensionality
(~ 27 DOFs)

17

9/14/06

TR
Sh

Approach

= Capture hand with cameras from several
viewpoints

= Preprocessing of captured images
(correction of camera lens distortion,
noise filtering)

= Edge detection

= Skin segmentation (bad illumination
correction, skin region detection)

= Generate hand model (cylinders, triangle-
mesh)

= Predict hand state

= Match hand model with image edges and
skin regions in images

204

Overview of the System “!

y
|

1. Lens distortion

. %G correction 1. Edge detection
i ",,, 2. Noise filtering 2. Skin color

3. bad illumination segmentation
correction

Calibration

18

9/14/06

19

